數(shù)字微流控技術(shù),作為一種新型的離散液滴操控技術(shù),以其優(yōu)勢在生物分析領(lǐng)域展現(xiàn)出巨大的潛力。該技術(shù)基于電信號實(shí)現(xiàn)對液滴的精確操控,具備自動(dòng)化和程序化操控的能力,為免疫分析等復(fù)雜操作提供了高效、便捷的解決方案。
首先,微流控技術(shù)能夠解決免疫分析操作繁瑣、費(fèi)時(shí)費(fèi)力的難題。傳統(tǒng)的免疫分析方法往往需要手動(dòng)進(jìn)行多個(gè)步驟的操作,不僅耗時(shí)耗力,還容易引入人為誤差。而微流控技術(shù)通過電信號控制液滴的運(yùn)動(dòng)和反應(yīng),實(shí)現(xiàn)了自動(dòng)化和程序化的操控,大大提高了操作的效率和準(zhǔn)確性。
其次,微流控技術(shù)的小體積反應(yīng)能力大大降低了試劑的消耗,進(jìn)一步降低了分析成本。在傳統(tǒng)的免疫分析中,由于反應(yīng)體系的體積較大,所需的試劑量也相對較多,導(dǎo)致分析成本較高。而微流控技術(shù)通過精確控制液滴的體積和運(yùn)動(dòng),實(shí)現(xiàn)了微量反應(yīng),從而減少了試劑的消耗,降低了分析成本。
此外,數(shù)字微流控技術(shù)還具有試劑樣本消耗少、檢測分析時(shí)間短、良好密閉隔絕污染等特點(diǎn)。這些特點(diǎn)使得微流控技術(shù)在生物分析應(yīng)用中具有顯著的優(yōu)勢。例如,試劑樣本消耗少意味著可以在有限的樣本量下進(jìn)行更多的分析實(shí)驗(yàn);檢測分析時(shí)間短則可以提高實(shí)驗(yàn)的效率,加快研究進(jìn)程;良好密閉隔絕污染則保證了實(shí)驗(yàn)的準(zhǔn)確性和可靠性。
數(shù)字微流控技術(shù)是一種先進(jìn)的實(shí)驗(yàn)室芯片技術(shù),它主要由四個(gè)基本部分構(gòu)成:基底、電極層、介質(zhì)層和疏水層。這些組成部分在實(shí)驗(yàn)中扮演著至關(guān)重要的角色,因此選擇合適的材料對于實(shí)驗(yàn)的成功至關(guān)重要。以下是對這些組成部分的詳細(xì)描述: 1.基底是微流控芯片的基礎(chǔ)結(jié)構(gòu),它不僅為整個(gè)芯片提供物理支撐,還對芯片的加工過程和電極陣列的設(shè)計(jì)產(chǎn)生深遠(yuǎn)影響。在選擇基底材料時(shí),通常需要考慮其與芯片設(shè)計(jì)的兼容性、加工難度以及成本等因素。常見的基底材料包括玻璃、硅、印刷電路板(PCB)以及其他柔性材料。這些材料各有特點(diǎn),例如玻璃具有良好的光學(xué)透明性,硅則具有優(yōu)異的半導(dǎo)體特性,而柔性材料則提供了更多的設(shè)計(jì)自由度。
2.電極層是微流控芯片中的關(guān)鍵組成部分,它負(fù)責(zé)實(shí)現(xiàn)液滴的驅(qū)動(dòng)和操控。電極層材料應(yīng)具備良好的導(dǎo)電性,以確保電流的順暢傳輸;同時(shí),還應(yīng)與基材保持良好的粘附性,以防止在使用過程中脫落;此外,電極層材料還應(yīng)與微加工技術(shù)兼容,以便于芯片的制造。常用的電極層材料包括重?fù)诫s多晶硅、金屬及其氧化物。其中,重?fù)诫s多晶硅通常通過化學(xué)氣相沉積制備,所需的驅(qū)動(dòng)微電極則通過蝕刻工藝形成。盡管這種方法可以與微機(jī)械加工技術(shù)兼容,但由于制備工藝復(fù)雜和工藝繁瑣,重?fù)诫s多晶硅的使用受到一定限制。
3.介質(zhì)層在數(shù)字微流控芯片中起到積聚電荷的作用,從而防止液滴在操作過程中電極擊穿。液滴操縱過程中所需的電壓與介電層材料的介電常數(shù)密切相關(guān),并且成反比關(guān)系。也就是說,介電層的介電系數(shù)越高,驅(qū)動(dòng)液滴所需的壓力就越低。因此,為了降低電壓需求,應(yīng)盡可能選擇具有高介電常數(shù)的材料作為介電層。此外,還可以通過優(yōu)化介電層的厚度來防止在長時(shí)間施加高壓或驅(qū)動(dòng)液滴時(shí)介電層擊穿的現(xiàn)象。
4.疏水層在微流控芯片中的主要作用是降低液滴驅(qū)動(dòng)阻力以及增大液滴的接觸角。通過優(yōu)化疏水層的設(shè)計(jì),可以有效地減少液滴在芯片表面的摩擦阻力,從而提高液滴的移動(dòng)速度和精確度。同時(shí),增大液滴的接觸角也有助于提高液滴的穩(wěn)定性和操控性。